
UNIT-3

Node.js: Getting Started with Node.js, Using Events, Listeners, Timers, and

Callbacks in Node.js, Handling Data I/O in Node.js. Accessing the File System

from Node.js, Implementing HTTP Services in Node.js.

Q) Differentiate React and Node

 Feature React Node.js

Purpose Front-end library Back-end framework

Language JavaScript JavaScript (with Node.js runtime)

Architecture Component-based Modular

Execution Environment Browser Server

Dependency Management npm npm or Yarn

Development Ecosystem Large and active community Large and active community

Q) Explain the significance of NPM.

Node.js provides a package manager called NPM (Node Package

Manager) which is a collection of all open-source JavaScript libraries
available in this world. It is the world’s largest software registry maintained
by the Node.js team. It helps in installing any library or module into your

machine.

This can be used to install, update, or uninstall any package through NPM.
1. Installing: npm install <package_name>[@<version>]

This will create a folder node_modules in the current directory and put all the
packages related files inside it. Here @version is optional if you don't specify
the version, the latest version of the module will be downloaded.

There are two modes of installation through NPM

i. Global installation: If we want to globally install any package or

tool add -g to the command. On installing any package globally, that

package gets added to the PATH so that we can run it from any
location on the computer.

 Syntax: npm install -g <package_name>
Eg.

npm install -g express

ii. Local installation: If we do not add -g to your command for

installation, the modules get installed locally, within a

node_modules folder under the root directory. This is the default
mode, as well.

Syntax: npm install <package_name>
Eg. npm install express

Best Practice: Start all projects with npm init. This will create a new
package.json for you which allows you to add a bunch of metadata to help

others working on the project have the same setup as you.

2. Update: We can also update the packages downloaded from the registry

to keep the code more secure and stable. Any update for a global
package can be done using the following command.

Syntax: npm update -g <package_name>
Eg. npm update express

3. Uninstall: uninstall the packages :

We can uninstall the package or module, which we downloaded using the
following command.

Syntax: npm uninstall <package_name>[@<version>]
Eg. npm uninstall express@2.1.0

4. Publishing a module: It is also possible to publish the custom modules
that we created to NPM so that we can make our modules to be available

for others to download.

Steps to publish a custom module to NPM:

i. Create a public repository like Github to contain the code for the
module.

ii. Create an account at https://npmjs.org/signup.

iii. Use the npm adduser command from a console prompt to add the user
you created to the environment.

iv. Type in the username, password, and email that you used to create the
account in step ii.

v. Modify the package.json file to include the new repository information

and any keywords that you want made available in the registry search
vi. Publish the module using the following command from the application

folder in the console: npm publish

 The package will be published successfully. To use this module

from npm, just use the "npm install mypackage" command from the
command line and it will get installed.

vii. To remove a package from the registry make sure that you have added

a user with rights to the module to the environment using npm adduser
and then execute the following command: npm unpublish

<module_name>

https://npmjs.org/signup

5. Security: To perform a quick security check know, we can make use of
npm audit which generates a report on the dependencies of your

application. This report consists of security threats to your application
and can help you fix vulnerabilities by providing npm commands and

recommendations for further troubleshooting.
 Syntax: npm audit
Q) What is package.json file? How to create it?

A Node project needs a configuration file named "package.json". It is a file that
contains basic information about the project like the package name, version

as well as more information like dependencies which specifies the additional
packages required for the project.

 To create a package.json file, open the Node command prompt and type
the below command.

npm init

eg.

 {

 "name": "my-package",
 "version": "1.0.0",
 "description": "A simple Node.js package for performing basic math

operations.",
 "main": "index.js",

 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },

 "keywords": [
 "node",
 "math",

 "package"
],

 "author": "Your Name",
 "license": "MIT"
}

Q) Explain about censorify module in node.js

The censored words are replaced with **** and that the new censored word
gloomy is added to the censorify module instance censor.

Install the module censorify using: npm install censorify.
var censor = require("censorify");
console.log(censor.getCensoredWords());

console.log(censor.censor("Some very sad, bad and mad text."));
censor.addCensoredWord("gloomy");

console.log(censor.getCensoredWords());
console.log(censor.censor("A very gloomy day."))

Output:
D:\PVP\MWA\Lab\NodeDemo> node Censor.js

['sad', 'bad', 'mad']
Some very ****, **** and **** text.

['sad', 'bad', 'mad', 'gloomy']
A very **** day.
Q) Explain how to create modules in node.js with an example.

A module can contain functions, classes, objects, or any other piece of code

that can be shared between different parts of an application.

 Node.js has a built-in module system that allows you to create and use

modules. A module can be defined in a separate file, and can be loaded into

other parts of the application using the require() function.

Eg.

calc.js:
exports.add = (a, b) => {

 console.log("Add Result:", a + b);
 };

exports.subtract = (a, b) => {
 console.log("Sub Result:", a - b);

 };

demo.js:
const myCalculator = require("./calc");
myCalculator.add(1, 2);

myCalculator.subtract(3, 2);

Here, the functions are exported using exports object in calc.js and require()

function is used in demo.js which loads the module calc.

Output:
D:\PVP\MWA\Lab\NodeDemo> node demo.js
Add Result: 3

Sub Result: 1

Q) Explain how to write data to console in Node.js

 One of the most useful modules in Node.js during the development
process is the console module. This module provides a lot of functionality

when writing debug and information statements to the console. The console
module allows you to control output to the console, implement time delta
output, and write tracebacks and assertions to the console.

Q) Explain Event Handling mechanism in Node.js

Node is used to build the back-end of web applications and provides an event-
driven, non-blocking I/O model that makes it highly efficient for handling
large amounts of data.

 The Node.js event model does things differently from traditional event

model. Instead of executing all the work for each request on individual
threads, work is added to an event queue and then picked up by a single
thread running an event loop. The event loop grabs the top item in the event

queue, executes it, and then grabs the next item. When executing code that
is no longer live or has blocking I/O, instead of calling the function directly,

the function is added to the event queue along with a callback that is executed
after the function completes. When all events on the Node.js event queue have
been executed, the Node application terminates.

Fig. Event Handling in Node.js

We can then use the event model to schedule work on the event queue. In

Node.js applications, work is scheduled on the event queue by passing a

callback function using one of these methods:

• Make a call to one of the blocking I/O library calls such as writing to a

file or connecting to a database.

• Add a built-in event listener to a built-in event such as an http.request

or server.connection.

• Create own event emitters and add custom listeners to them.

• Use the process.nextTick option to schedule work to be picked up on

the next cycle of the event loop.

• Use timers to schedule work to be done after a particular amount of

time or at periodic intervals.

Eg. Create any custom event as an example.

Q) Explain how to schedule/add work to Event Queue using Timers.

There are three types of timers you can implement in Node.js: timeout,

interval, and immediate.

i. Delaying Work with Timeouts
• Timeout timers are used to delay work for a specific amount of time.

When that time expires, the callback function is executed and the timer

goes away
• Timeout timers are created using the setTimeout(callback,

delayMilliSeconds, [args]) method built into Node.js.

When you call setTimeout(), the callback function is executed after

delayMilliSecondsexpires.

For example, the following executes myFunc() after 1 second:

setTimeout(myFunc, 1000);

The setTimeout() function returns a timer object ID. You can pass this ID to
clearTimeout(timeoutId) at any time before the delayMilliSeconds expires to
cancel the timeout function.

Eg. Implementing a series of timeouts at various
intervals

Timer1.js

function simpleTimeout(consoleTimer){
 console.timeEnd(consoleTimer);
 }

 console.time("twoSecond");

 setTimeout(simpleTimeout, 2000, "twoSecond");
 console.time("oneSecond");
 setTimeout(simpleTimeout, 1000, "oneSecond");

 console.time("fiveSecond");
 setTimeout(simpleTimeout, 5000, "fiveSecond");
 console.time("50MilliSecond");

 setTimeout(simpleTimeout, 50, "50MilliSecond");

• The console.time() method starts a timer you can use to track how

long an operation takes. You give each timer a unique name, and may
have up to 10,000 timers running on a given page.

• When you call console.timeEnd() with the same name, the browser will
output the time, in milliseconds, that elapsed since the timer was
started.

Output:
C:\Program Files\nodejs\node.exe .\Timer1.js

50MilliSecond: 50.341064453125 ms
50MilliSecond: 50.751ms

oneSecond: 1015.48388671875 ms
oneSecond: 1.016s
twoSecond: 2014.297119140625 ms

twoSecond: 2.014s
fiveSecond: 5008.2470703125 ms

fiveSecond: 5.009s

ii. Performing Periodic Work with Intervals

• Interval timers are used to perform work on a regular delayed interval.
When the delay time expires, the callback function is executed and is
then rescheduled for the delay interval again.

• Interval timers are created using the
setInterval(callback,delayMilliSeconds, [args]) method built into

Node.js.
• When you call setInterval(), the callback function is executed every

interval after

delayMilliSeconds has expired. For example, the following executes
myFunc() every second:
setInterval(myFunc, 1000);

Eg. Timer2.js

var x=0, y=0, z=0;
function displayValues(){

console.log("X=%d; Y=%d; Z=%d", x, y, z);
}

function updateX(){
x += 1;

}
function updateY(){
y += 1;

}
function updateZ(){

z += 1;
displayValues();
}

https://developer.mozilla.org/en-US/docs/Web/API/console/timeEnd
https://developer.mozilla.org/en-US/docs/Web/API/console/timeEnd

setInterval(updateX, 500);
setInterval(updateY, 1000);

setInterval(updateZ, 2000);

Output:
C:\Program Files\nodejs\node.exe .\Timer2.js
X=3; Y=1; Z=1

X=7; Y=3; Z=2
X=11; Y=5; Z=3
X=15; Y=7; Z=4

X=19; Y=9; Z=5
X=23; Y=11; Z=6

X=27; Y=13; Z=7

iii. Performing Immediate Work with an Immediate Timer

• Immediate timers are used to perform work on a function as soon as

the I/O event callbacks are executed, but before any timeout or interval
events are executed. This allows you to schedule work to be done after
the current events in the event queue are completed.

• Immediate timers are created using the
setImmediate(callback,[args])method built into Node.js. When you call
setImmediate(), the callback function is placed on the event queue and

popped off once for each iteration through the eventqueue loop after I/O
events have a chance to be called

iv. Using nextTick to Schedule Work

• A useful method of scheduling work on the event queue is the
process.nextTick(callback) function. This function schedules work to be
run on the next cycle of the event loop. Unlike the setImmediate()

method, nextTick() executes before the I/O events are fired.
• This can result in starvation of the I/O events, so Node.js limits the

number of nextTick() events that can be executed each cycle through
the event queue by the value of process.maxTickDepth, which defaults
to 1000.

Eg. Timer3.js

var fs = require("fs");
fs.stat("nexttick.js", function(){

 console.log("nexttick.js Exists");
});

setImmediate(function(){
console.log("Immediate Timer 1 Executed");

});

setImmediate(function(){
 console.log("Immediate Timer 2 Executed");

});

process.nextTick(function(){
console.log("Next Tick 1 Executed");
});

process.nextTick(function(){
console.log("Next Tick 2 Executed");

});

Output:
C:\Program Files\nodejs\node.exe .\Timer3.js
Next Tick 1 Executed

Next Tick 2 Executed
Immediate Timer 1 Executed

Immediate Timer 2 Executed
nexttick.js Exists

v. Dereferencing Timers from the Event Loop
Often we do not want timer event callbacks to continue to be
scheduled when they are the only events left in the event queue.

The unref() function available in the object returned by setInterval
and setTimeout allows us to notify the event loop to not continue

when these are the only events on the queue.
Eg.
myInterval = setInterval(myFunc);

myInterval.unref();

If for some reason later do not want the program to terminate if the

interval function is the only event left on the queue, you can use the
ref() function to rereference it: myInterval.ref();

Q) Explain how to create a custom event in Node.js

In Node.js, events are a core concept that allows applications to respond to
different types of actions or changes that occur within the application. An

event is essentially a signal that something has happened, such as a user
clicking a button, a file being read or written, or a network connection being
established.

 Event listeners are functions that are registered to listen for and
respond to specific events. When an event occurs, all registered event listeners

for that event are executed in the order they were registered. Event listeners
can be added or removed dynamically, and multiple event listeners can be

registered for the same event.

 Events are emitted using an EventEmitter object. This object is included
in the events module. The emit(eventName, [args]) function triggers the

eventName event and includes any arguments provided.

The following code snippet shows how to implement a simple event emitter:
 var events = require('events');
 var emitter = new events.EventEmitter();

 emitter.emit("simpleEvent");

Adding Event Listeners to Objects

• addListener(eventName, callback): Attaches the callback
function to the object’s listeners. Every time the eventName event is triggered,

the callback function is placed in the event queue to be executed.
• .on(eventName, callback): Same as .addListener().
• .once(eventName, callback): Only the first time the eventName event

is triggered, the callback function is placed in the event queue to be
executed.

Removing Listeners from Objects:
• .listeners(eventName): Returns an array of listener functions attached

to the eventName event.

• .setMaxListeners(n): Triggers a warning if more than n listeners are
added to an EventEmitter object. The default is 10.

• .removeListener(eventName, callback): Removes the callback

function from the eventName event of the EventEmitter object.

Eg. 1:

var events = require('events');

var eventEmitter = new events.EventEmitter();

//Create an event handler:

var welcome = function () {

 console.log('Welcome to pvpsit');

}

var bye = function () {

 console.log('Good bye to pvpsit');

}

//Assign the eventhandler to an event:

eventEmitter.on('greet', welcome);

eventEmitter.on('greet', bye);

//Fire the 'greet' event:

eventEmitter.emit('greet');

var listener_count = eventEmitter.listenerCount('greet');

console.log(listener_count + " Listner(s) listening to greet event");

// Remove the binding of listner bye function

eventEmitter.removeListener('greet', bye);

console.log("listener bye removed..");

Output:

 node Event_Demo.js

Welcome to pvpsit

Good bye to pvpsit

2 Listner(s) listening to greet event

listener bye removed..

Eg. 2.
Event1.js

var events = require('events');

 function Account() {
 this.balance = 0;
 events.EventEmitter.call(this);

 this.deposit = function(amount){
 this.balance += amount;
 this.emit('balanceChanged');

 };

 this.withdraw = function(amount){
 this.balance -= amount;
 this.emit('balanceChanged');

 };
 }

 Account.prototype.__proto__ = events.EventEmitter.prototype;
 function displayBalance(){

 console.log("Account balance: $%d", this.balance);
 }

 function checkOverdraw(){
 if (this.balance < 0){
 console.log("Account overdrawn!!!");

 }
 }

 function checkGoal(acc, goal){
 if (acc.balance > goal){

 console.log("Goal Achieved!!!");
 }

 }
 var account = new Account();

 account.on("balanceChanged", displayBalance);
 account.on("balanceChanged", checkOverdraw);
 account.on("balanceChanged", function(){

 checkGoal(this, 1000);
 });
 account.deposit(220);

 account.deposit(320);
 account.deposit(600);

 account.withdraw(1200);

Output:
C:\Program Files\nodejs\node.exe .\Event1.js

Account balance: $220
Account balance: $540
Account balance: $1140

Goal Achieved!!!
Account balance: $-60
Account overdrawn!!!

Q) What is a callback? Explain different types of callbacks with suitable

examples.

Callback: A callback is a function or piece of code that is passed as an

argument to another function, with the intention of being called at some
point during the execution of that function or method. A callback function
can be defined with or without parameters.

Eg.
function sum(a, b, callback) {

 let result = a + b;
 callback();
 console.log(result)

 }

 function logResult() {
 console.log('The sum is:');
 }

 sum(2, 3, logResult);

Output:
node callback0.js

The sum is:
5

Callback with parameters:
Eg. 1:

function add(a, b, callback) {
 let result = a + b;

 callback(result);
 }

 function logResult(sum) {
 console.log('The sum is %d',sum);
 }

 add(2, 3, logResult);

Output:
node callback1.0.js

The sum is 5

Eg. 2:
var events = require('events');

 function CarShow() {
 events.EventEmitter.call(this);
 this.seeCar = function(make){

 this.emit('sawCar', make);
 };

 }

 CarShow.prototype.__proto__ = events.EventEmitter.prototype;

 var show = new CarShow();
 function logCar(make){

 console.log("Saw a " + make);
 }

 function logColorCar(make, color){
 console.log("Saw a %s %s", color, make);
 }

 show.on("sawCar", logCar);
 show.on("sawCar", function(make){

 var colors = ['red', 'blue', 'black'];
 var color = colors[Math.floor(Math.random()*3)];
 logColorCar(make, color);

 });
 show.seeCar("Ferrari");
 show.seeCar("Porsche");

 show.seeCar("Bugatti");
 show.seeCar("Lamborghini");

 show.seeCar("Aston Martin");

Output:
node callback1.js

Saw a Ferrari
Saw a black Ferrari

Saw a Porsche
Saw a red Porsche
Saw a Bugatti

Saw a red Bugatti
Saw a Lamborghini
Saw a red Lamborghini

Saw a Aston Martin
Saw a red Aston Martin

Closure callback: In Node.js, a closure callback is a function that has
access to variables in its parent function scope, even after the parent

function has returned. This is achieved through closure, which allows a
function to "remember" its lexical scope.

Eg. 1:
function counter() {

 let count = 0;

 const incrementCount = function() {

 count++;
 console.log(`Count is now ${count}`);

 };

 return incrementCount;

 }

 const callback = counter();

 callback(); // Output: 'Count is now 1'
 callback(); // Output: 'Count is now 2'

Output:
node callback2.0.js

Count is now 1
Count is now 2

Eg.2:

function logCar(logMsg, callback){
 process.nextTick(function() {
 callback(logMsg);

 });
 }

var cars = ["Ferrari", "Porsche", "Bugatti"];
for (var idx in cars){
 var message = "Saw a " + cars[idx];

 logCar(message, function(){
 console.log("Normal Callback: " + message);

 });
 }

for (var idx in cars){
 var message = "Saw a " + cars[idx];
 (function(msg){

 logCar(msg, function(){
 console.log("Closure Callback: " + msg);
 });

 })(message);
 }

Output:
node callback2.js

Normal Callback: Saw a Bugatti
Normal Callback: Saw a Bugatti

Normal Callback: Saw a Bugatti
Closure Callback: Saw a Ferrari
Closure Callback: Saw a Porsche

Closure Callback: Saw a Bugatti
 The second loop also iterates over the cars array, but it uses a closure
to pass the log message to the callback function.

Chained Callback: A chained callback is a series of callback functions that

are executed one after another in a sequence. The output of one callback
function is passed as input to the next callback function in the chain.
function add(a, b, callback) {

 let sum = a + b;
 callback(sum);
 }

 function square(num, callback) {

 let result = num * num;
 callback(result);
 }

 function logResult(result) {

 console.log(`The final result is ${result}`);
 }

 add(2, 3, function(sum) {
 square(sum, function(result) {
 logResult(result);

 });
 });

Output:
node callback3.0.js

The final result is 25

Eg. 2:
function logCar(car, callback){
 console.log("Saw a %s", car);

 if(cars.length){
 process.nextTick(function(){
 callback();

 });
 }

 }
 function logCars(cars){
 var car = cars.pop();

 logCar(car, function(){
 logCars(cars);

 });
 }
 var cars = ["Ferrari", "Porsche", "Bugatti",

 "Lamborghini", "Aston Martin"];
 logCars(cars);

Output:
node callback3.js

Saw a Aston Martin
Saw a Lamborghini
Saw a Bugatti

Saw a Porsche
Saw a Ferrari

Q) Explain Buffer class in Node.js with an example.

Node provides Buffer class which provides instances to store raw data
similar to an array of integers but corresponds to a raw memory allocation
outside the V8 heap. Buffer class is a global class that can be accessed in an

application without importing the buffer module.
var buf1 = new Buffer(100);

var buf2 = new Buffer(100);

var buf3 = new Buffer(26);

for (var i = 0 ; i < 26 ; i++) {
 buf3[i] = i + 97;
}

console.log("buffer 3:"+ buf3.toString('ascii'));

len = buf1.write("Welcome to pvpsit");
console.log(" buf1 Octets written : "+ len);
console.log("buffer 1:"+ buf1.toString('utf-8'));

len = buf2.write("Welcome to it");

console.log("buf2 Octets written : "+ len);
console.log("buffer 2:"+ buf2.toString('utf-8'));

var buf6 = Buffer.concat([buf1,buf2]);
console.log("buffer after concatinating buf1 and buf2: " + buf6.toString());

var buf4 = new Buffer(26)
buf3.copy(buf4);

console.log("buffer4 content: " + buf4.toString());

var buf5 = buf4.slice(0,9);
console.log("buf4.slice(0,9): " + buf5.toString()+" and length is "+buf5.length);

var result = buf5.compare(buf4);
if(result < 0) {

 console.log(buf4 +" comes after " + buf5);
}else if(result == 0){
 console.log(buf4 +" is same as " + buf5);

}else {
 console.log(buf4 +" comes before " + buf5);
}

var json = buf5.toJSON(buf5);

console.log(json);

O/P:

PS D:\PVP\MWA\Lab\Files> node Event_Demo.js
Welcome to pvpsit
Good bye to pvpsit

2 Listner(s) listening to greet event
listener bye removed..

PS D:\PVP\MWA\Lab\Files>
 * History restored

buffer 3:abcdefghijklmnopqrstuvwxyz
 buf1 Octets written : 17

buffer 1:Welcome to pvpsit
buf2 Octets written : 13
buffer 2:Welcome to it

buffer after concatinating buf1 and buf2: Welcome to pvpsitWelcome to it
buffer4 content: abcdefghijklmnopqrstuvwxyz
buf4.slice(0,9): abcdefghi and length is 9

abcdefghijklmnopqrstuvwxyz comes after abcdefghi
{

 type: 'Buffer',
 data: [
 97, 98, 99, 100,

 101, 102, 103, 104,
 105

]
}

Writing to Buffers Syntax Following is the syntax of the method to write into
a Node Buffer: buf.write(string[, offset][, length][, encoding])

Parameters Here is the description of the parameters used: • string - This is
the string data to be written to buffer.

• offset - This is the index of the buffer to start writing at. Default value is 0.

• length - This is the number of bytes to write. Defaults to buffer.length.

• encoding - Encoding to use. 'utf8' is the default encoding.
Return Value This method returns the number of octets written. If there is
not enough space in the buffer to fit the entire string, it will write a part of
the string.

Reading from Buffers Syntax Following is the syntax of the method to read

data from a Node Buffer: buf.toString([encoding][, start][, end])
Parameters Here is the description of the parameters used:

• encoding - Encoding to use. 'utf8' is the default encoding.

• start - Beginning index to start reading, defaults to 0.

• end - End index to end reading, defaults is complete buffer.
Return Value This method decodes and returns a string from buffer data

encoded using the specified character set encoding.
Convert Bufferto JSON Syntax Following is the syntax of the method to
convert a Node Buffer into JSON object:

buf.toJSON()
Return Value This method returns a JSON-representation of the Buffer
instance.

Concatenate Buffers Syntax Following is the syntax of the method to

concatenate Node buffers to a single Node Buffer:
 Buffer.concat(list[, totalLength])
 Parameters Here is the description of the parameters used:

• list - Array List of Buffer objects to be concatenated.

• totalLength - This is the total length of the buffers when concatenated.
Return Value This method returns a Buffer instance.

Compare Buffers Syntax Following is the syntax of the method to compare
two Node buffers: buf.compare(otherBuffer);

Parameters Here is the description of the parameters used:

• otherBuffer - This is the other buffer which will be compared with buf.
Return Value Returns a number indicating whether it comes before or after
or is the same as the otherBuffer in sort order.

Copy Buffer Syntax Following is the syntax of the method to copy a node
buffer: buf.copy(targetBuffer[, targetStart][, sourceStart][, sourceEnd])
Parameters Here is the description of the parameters used:

• targetBuffer - Buffer object where buffer will be copied.

• targetStart - Number, Optional, Default: 0

• sourceStart - Number, Optional, Default: 0

• sourceEnd - Number, Optional, Default: buffer.length
Return Value No return value.

Slice Buffer Syntax Following is the syntax of the method to get a sub-

buffer of a node buffer: buf.slice([start][, end])
Parameters Here is the description of the parameters used:

• start - Number, Optional, Default: 0

 • end - Number, Optional, Default: buffer.length
Return Value Returns a new buffer which references the same memory as
the old one

Buffer Length Syntax Following is the syntax of the method to get a size of
a node buffer in bytes: buf.length;

Return Value Returns the size of a buffer in bytes.

Q) What are streams? Explain different types of streams with suitable

examples.

Streams are objects that let you read data from a source or write data to a
destination in continuous fashion. In Node.js, there are four types of
streams:

• Readable - Stream which is used for read operation.

 • Writable - Stream which is used for write operation.

• Duplex - Stream which can be used for both read and write operation.

Each type of Stream is an EventEmitter instance and throws several events
at different instance of times. For example, some of the commonly used

events are:

• data - This event is fired when there is data is available to read.

• end - This event is fired when there is no more data to read.

• error - This event is fired when there is any error receiving or writing data.

• finish - This event is fired when all the data has been flushed to underlying
system.

Eg. Read Stream

var fs = require('fs');
 var options = { encoding: 'utf8', flag: 'r' };

 var fileReadStream = fs.createReadStream("grains.txt", options);
 fileReadStream.on('data', function(chunk) {
 console.log('Grains: %s', chunk);

 console.log('Read %d bytes of data.', chunk.length);
 });
 fileReadStream.on("close", function(){

 console.log("File Closed.");
});

Eg. Write Stream
var fs = require('fs');

var grains = ['wheat', 'rice', 'oats'];

var options = { encoding: 'utf8', flag: 'w' };
var fileWriteStream = fs.createWriteStream("grains.txt", options);

fileWriteStream.on("close", function(){
 console.log("File Closed.");
});

while (grains.length){

 var data = grains.pop() + " ";
 fileWriteStream.write(data);
 console.log("Wrote: %s", data);

}
fileWriteStream.end();

var options = { encoding: 'utf8', flag: 'r' };
var fileReadStream = fs.createReadStream("grains.txt", options);

fileReadStream.on('data', function(chunk) {
 console.log('Grains: %s', chunk);

 console.log('Read %d bytes of data.', chunk.length);
});

Eg. Duplex Stream:
var stream = require('stream');

var util = require('util');
util.inherits(Duplexer, stream.Duplex);
function Duplexer(opt) {

 stream.Duplex.call(this, opt);
 this.data = [];

 }
Duplexer.prototype._read = function readItem(size) {
var chunk = this.data.shift();

 if (chunk == "stop"){
 this.push(null);

 } else {
 if(chunk){
 this.push(chunk);

 } else {
 setTimeout(readItem.bind(this), 500, size);
 }

 }
 };

 Duplexer.prototype._write = function(data, encoding, callback) {
 this.data.push(data);
 callback();

 };
 var d = new Duplexer();

 d.on('data', function(chunk){
 console.log('read: ', chunk.toString());

 });
 d.on('end', function(){
 console.log('Message Complete');

 });
 d.write("I think, ");
 d.write("therefore ");

 d.write("I am.");
 d.write("Rene Descartes");

 d.write("stop");

Piping is a mechanism where we provide the output of one stream as the
input to another stream. It is normally used to get data from one stream and

to pass the output of that stream to another stream. There is no limit on
piping operations.
Eg. To copy data from one file to another:

var fs = require("fs");
// Create a readable stream
var readerStream = fs.createReadStream('count.txt');

// Create a writable stream
var writerStream = fs.createWriteStream('c.txt');

// Pipe the read and write operations
// read input.txt and write data to output.txt
readerStream.pipe(writerStream);

console.log("Program Ended");

Chaining is a mechanism to connect the output of one stream to another

stream and create a chain of multiple stream operations. It is normally used
with piping operations.

Eg. Zlib for compressing a file
var fs = require("fs");
var zlib = require('zlib');

// Compress the file input.txt to input.txt.gz
fs.createReadStream('c.txt')

 .pipe(zlib.createGzip())
 .pipe(fs.createWriteStream('c.txt.gz'));

console.log("File Compressed.");

fs.createReadStream('c.txt.gz')

 .pipe(zlib.createGunzip())
 .pipe(fs.createWriteStream('c.txt'));

console.log("File Decompressed.");

Q) Write a program in Node.js to count no.of lines, words and
characters in a given file.

const fs = require('fs');

// Function to count lines, words, and characters in a file
const countLinesWordsChars = (file) => {

 let lines = 0;
 let words = 0;
 let chars = 0;

 // Create a readable stream from the file

 const stream = fs.createReadStream(file, { encoding: 'utf8' });

 // Listen for 'data' event, which is emitted whenever data is read from the

stream
 stream.on('data', (data) => {

 // Count lines by counting the number of newline characters
 lines += data.split('\n').length;

 // Count words by splitting the data by whitespace characters and
filtering out empty strings
 words += data.split(/\s+/).filter(Boolean).length;

 // Count characters by adding the length of the data

 chars += data.length;
 });

 // Listen for 'end' event, which is emitted when the end of the stream is
reached
 stream.on('end', () => {

 console.log(`Number of lines: ${lines}`);
 console.log(`Number of words: ${words}`);

 console.log(`Number of characters: ${chars}`);
 });

 // Listen for 'error' event, which is emitted when an error occurs
 stream.on('error', (err) => {

 console.error(`Error reading file: ${err}`);
 });
};

// Call the function with the file name as argument
countLinesWordsChars('count.txt');

Q) Write a program in Node.js to count no.of vowels, consonants, digits
and special characters in a given file.

const fs = require('fs');

function countChars(filename) {
 const vowels = 'aeiouAEIOU';
 let vowelCount = 0;

 let consonantCount = 0;
 let digitCount = 0;
 let specialCharCount = 0;

 const stream = fs.createReadStream(filename, { encoding: 'utf8' });

 stream.on('data', (data) => {
 for (const char of data) {

 if (char.match(/[a-zA-Z]/)) {
 if (vowels.includes(char)) {

 vowelCount++;
 } else {
 consonantCount++;

 }
 } else if (char.match(/\d/)) {
 digitCount++;

 } else if (char.match(/\S/)) {
 specialCharCount++;

 }
 }
 });

 stream.on('end', () => {
 console.log(`Vowels: ${vowelCount}`);

 console.log(`Consonants: ${consonantCount}`);
 console.log(`Digits: ${digitCount}`);

 console.log(`Special Characters: ${specialCharCount}`);
 });

 stream.on('error', (err) => {
 console.error(`Error reading file: ${err}`);

 });
}

//reading file from user
const file = process.argv[2];
if (file) {

 countChars(file);
} else {

 console.error('Please provide a file name as an argument.');
}

Q) Explain about Node File I/O with suitable examples.

The Node File System (fs) module can be imported using the following
syntax:

var fs = require("fs")
Synchronous vs Asynchronous
Every method in the fs module has synchronous as well as asynchronous

forms.
Asynchronous methods take the last parameter as the completion function
callback and the first parameter of the callback function as error.

It is better to use an asynchronous method instead of a synchronous
method, as the former never blocks a program during its execution, whereas

the second one does.
Eg. Asynchronous read and write:
var fs = require('fs');

 var fruitBowl = ['apple', 'orange', 'banana', 'grapes'];
 function writeFruit(fd){

 if (fruitBowl.length){
 var fruit = fruitBowl.pop() + " ";
 fs.write(fd, fruit, null, null, function(err, bytes){

 if (err){
 console.log("File Write Failed.");
 } else {

 console.log("Wrote: %s %dbytes", fruit, bytes);
 writeFruit(fd);

 }
 });
 } else {

 fs.close(fd);
 }
 }

 fs.open('fruit.txt', 'w', function(err, fd){
 writeFruit(fd);

});

function readFruit(fd, fruits){

 var buf = new Buffer(5);
 buf.fill();

 fs.read(fd, buf, 0, 5, null, function(err, bytes, data){
 if (bytes > 0) {
 console.log("read %dbytes", bytes);

 fruits += data;
 readFruit(fd, fruits);
 } else {

 fs.close(fd);
 console.log ("Fruits: %s", fruits);

 }
 });
 }

 fs.open('fruit.txt', 'r', function(err, fd){
 readFruit(fd, "");

 });

Eg. Synchronous Read and Write
var fs = require('fs');
 var veggieTray = ['carrots', 'celery', 'olives'];

 fd = fs.openSync('veggie.txt', 'w');
 while (veggieTray.length){
 veggie = veggieTray.pop() + " ";

 var bytes = fs.writeSync(fd, veggie, null, null);
 console.log("Wrote %s %dbytes", veggie, bytes);

 }
fs.closeSync(fd);

fd = fs.openSync('veggie.txt', 'r');
 var veggies = "";

 do {
 var buf = new Buffer(5);
 buf.fill();

 var bytes = fs.readSync(fd, buf, null, 5);
 console.log("read %dbytes", bytes);
 veggies += buf.toString();

 } while (bytes > 0);
 fs.closeSync(fd);

console.log("Veg g (to get output shown) ies: " + veggies);

Q) Write a program in Node.js to access file system
A. accessing file statistics

var fs = require('fs');
 fs.stat('file_stats.js', function (err, stats) {
 if (!err){

 console.log('stats: ' + JSON.stringify(stats, null, ' '));
 console.log(stats.isFile() ? "Is a File" : "Is not a File");
 console.log(stats.isDirectory() ? "Is a Folder" : "Is not a Folder");

 console.log(stats.isSocket() ? "Is a Socket" : "Is not a Socket");
 console.log(stats.isDirectory() ? "Is a Directory" : "Is not a Directory");

 stats.isBlockDevice();
 stats.isCharacterDevice();
 stats.isSymbolicLink(); //only lstat

 stats.isFIFO();

 }
});

b. To list files/directories in a given directory:

var fs = require('fs');
 var Path = require('path');
 function WalkDirs(dirPath){

 console.log(dirPath);
 fs.readdir(dirPath, function(err, entries){

 for (var idx in entries){
 var fullPath = Path.join(dirPath, entries[idx]);
 (function(fullPath){

 fs.stat(fullPath, function (err, stats){
 if (stats.isFile()){

 console.log(fullPath);
 } else if (stats.isDirectory()){
 WalkDirs(fullPath);

 }
 });
 })(fullPath);

 }
 });

 }

WalkDirs("../Files");

C. To create a directory:
let fs = require('fs')

fs.mkdir("../Files/folderA", function(err){
 console.log(err ? "Directory not created" : "Directory created.");

});

D. Listing Files:
fs.readdir(path, callback)

fs.readdirSync(path)
e. Deleting Files:

fs.unlink(path, callback)
fs.unlinkSync(path)
eg.

fs.unlink("new.txt", function(err){
console.log(err ? "File Delete Failed" : "File Deleted");
 });

F. Truncating Files:

To truncate a file, use one the following fs calls and pass in the number of
bytes you want the file to contain when the truncation completes:
fs.truncate(path, len, callback)

fs.truncateSync(path, len)
The truncateSync(path) returns true or false based on whether the file is

successfully truncated. The asynchronous truncate() call passes an error
value to the callback function if an error is encountered when truncating the
file.

Eg.
fs.truncate("new.txt", function(err){
console.log(err ? "File Truncate Failed" : "File Truncated");

});

G. Making and Removing Directories:
fs.mkdir(path, [mode], callback)
fs.mkdirSync(path, [mode])

The mkdirSync(path) returns true or false based on whether the directory is
successfully created. The asynchronous mkdir() call passes an error value to
the callback function if an error is encountered when creating the directory.

Eg.
let fs = require('fs')

fs.mkdir("../Files/folderA", function(err){
 console.log(err ? "Directory not created" : "Directory created.");
});

Output:
node CreateDir.js

Directory created.

H. Delete Directories:

fs.rmdir(path, callback)
fs.rmdirSync(path)
eg.

let fs = require('fs')
fs.rmdir("../Files/folderA", function(err){

 console.log(err ? "Directory not deleted": "Directory deleted.");
});

I. Renaming Files and Directories:

fs.rename(oldPath, newPath, callback)
fs.renameSync(oldPath, newPath)

The oldPath specifies the existing file or directory path, and the newPath
specifies the new name. The renameSync(path) returns true or false based

on whether the file or directory is successfully renamed. The asynchronous
rename() call passes an error value to the callback function if an error is
encountered when renaming the file or directory.

Eg.

fs.rename("old.txt", "new.txt", function(err){ console.log(err ? "Rename Failed"
: "File Renamed"); });

fs.rename("testDir", "renamedDir", function(err){ console.log(err ? "Rename
Failed" : "Folder Renamed"); });

J. Watching for File Changes:
the fs module provides a useful tool to watch a file and execute a callback

function when the file changes. This can be useful if you want to trigger
events to occur when a file is modified, but do not want to continually poll
from your application directly. This does incur some overhead in the

underlying OS, so you should use watches sparingly.

fs.watchFile(path, [options], callback)

When a file change occurs, the callback function is executed and passes a

current and previous Stats object.

Eg.
fs.watchFile("log.txt", {persistent:true, interval:5000}, function (curr, prev) {

console.log("log.txt modified at: " + curr.mtime); console.log("Previous
modification was: " + prev.mtime);
 });

Q) Explain Events and Methods available on HTTP ClientRequest and

ServerResponse objects.

The http.ClientRequest Object:
The ClientRequest object is created internally when you call http.request()

when building the HTTP client.
To implement a ClientRequest object, you use a call to http.request() using
the following syntax: http.request(options, callback)

The http.ServerResponse Object :
The ServerResponse object is created by the HTTP server internally when a

request event is received. It is passed to the request event handler as the
second argument. You use the ServerRequest object to formulate and send a

response to the client. The ServerResponse implements a Writable stream,
so it provides all the functionality of a Writable stream object. For example,
you can use the write() method to write to it as well as pipe a Readable

stream into it to write data back to the client.

Q) Implement HTTP Services in Node.js to read user name from user
and greet the user as the response.

index.html:

<!DOCTYPE html>
<html>
<head>

 <title>Greeting Form</title>
</head>
<body>

 <form action="/greet" method="POST">
 <label for="name">Enter your name:</label>

 <input type="text" id="name" name="name">
 <button type="submit">Submit</button>
 </form>

</body>
</html>

index.js
const http = require('http');

const fs = require('fs');
const path = require('path');

const server = http.createServer((req, res) => {
 if (req.method === 'GET' && req.url === '/') {

 // Read the HTML file
 fs.readFile(path.join(__dirname, 'index.html'), 'utf8', (err, data) => {
 if (err) {

 res.statusCode = 500;
 res.end('Internal Server Error');
 } else {

 res.setHeader('Content-Type', 'text/html');
 res.end(data);

 }
 });
 } else if (req.method === 'POST' && req.url === '/greet') {

 let data = '';

 // Collect the data from the request
 req.on('data', chunk => {
 data += chunk;

 });

 // Process the collected data

 req.on('end', () => {
 const name = new URLSearchParams(data).get('name');

 const greeting = `Hello, ${name}!`;

 res.setHeader('Content-Type', 'text/plain');

 res.statusCode = 200;
 res.end(greeting);

 });
 } else {

 res.statusCode = 404;
 res.end('Not Found');
 }

});

// Start the server on port 3000

server.listen(3000, () => {
 console.log('Server listening on port 3000');

});

O/P:

node index.js
Server listening on port 3000

